If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2+8c-11=0
a = 3; b = 8; c = -11;
Δ = b2-4ac
Δ = 82-4·3·(-11)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-14}{2*3}=\frac{-22}{6} =-3+2/3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+14}{2*3}=\frac{6}{6} =1 $
| 2(x-2)+3(x+1)=6x+5 | | 10d+5=30 | | (6x+50)+(5x+8)+(4x+20)+(72)=360 | | -5m+25=-70 | | 38=8+3n | | 3c^2-14c+7=0 | | (6x50)+(5x+8)+(4x+20)+(72)=360 | | 43x-2=256 | | 0.1x+0.2=2.5 | | 2x(72)-43=360 | | 2/3x+6=3/2x-2 | | (2x-32)+(2x-43)+(66)+(x+9)=360 | | 2+2(2x+3)=2(3x+1)+3 | | 3-7^2x+5=1 | | 2(4x+2)+3=31 | | 2(3x-1)+1=11 | | (r-2)^3=0 | | 3c^2+10c-17=-9 | | 10-2x=6x-6 | | m²=62 | | 7x+4-6x=8 | | 3c^2-14c+4=4 | | 2(2.7182)^x=50 | | 3c^2-8c-20=-9 | | 3c^2-16c-20=-9 | | X+.2x=55000 | | Y=5/4x+38 | | 13+5x=250+5x | | 13+5=250+5x | | (m+5)=21 | | 4x+53/15=-5 | | 7x=15=38 |